Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cell Death Dis ; 15(4): 249, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582872

RESUMO

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.


Assuntos
Inibidor da Ligação a Diazepam , Ácido gama-Aminobutírico , Animais , Camundongos , Inibidor da Ligação a Diazepam/farmacologia
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569504

RESUMO

Most of the DNA of eukaryotes is located in the nucleus [...].


Assuntos
Núcleo Celular , Plantas , Plantas/genética , Núcleo Celular/genética , DNA
3.
Plant Sci ; 335: 111819, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562732

RESUMO

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Assuntos
Arabidopsis , Ribonucleotídeo Redutases , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fenótipo
4.
Aging Cell ; 22(9): e13910, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357988

RESUMO

Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.


Assuntos
Proteínas de Transporte , Inibidor da Ligação a Diazepam , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Envelhecimento , Autofagia , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Biology (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290315

RESUMO

Somatic copy number variations (SCNVs) are genetic alterations frequently found in cancer cells. These genetic alterations can lead to concomitant perturbations in the expression of the genes included in them and, as a result, promote a selective advantage to cancer cells. However, this is not always the case. Due to this, it is important to develop in silico tools to facilitate the accurate identification and functional cataloging of gene expression changes associated with SCNVs from pan-cancer data. Here, we present a new R-coded tool, designated as CiberAMP, which utilizes genomic and transcriptomic data contained in the Cancer Genome Atlas (TCGA) to identify such events. It also includes information on the genomic context in which such SCNVs take place. By doing so, CiberAMP provides clues about the potential functional relevance of each of the SCNV-associated gene expression changes found in the interrogated tumor samples. The main features and advantages of this new algorithm are illustrated using glioblastoma data from the TCGA database.

7.
EMBO J ; 41(21): e110727, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36124427

RESUMO

Better understanding on interactions between SARS-CoV-2 and host cells should help to identify host factors that may be targetable to combat infection and COVID-19 pathology. To this end, we have conducted a genome-wide CRISPR/Cas9-based loss-of-function screen in human lung cancer cells infected with SARS-CoV-2-pseudotyped lentiviruses. Our results recapitulate many findings from previous screens that used full SARS-CoV-2 viruses, but also unveil two novel critical host factors: the lysosomal efflux transporter SPNS1 and the plasma and lysosomal membrane protein PLAC8. Functional experiments with full SARS-CoV-2 viruses confirm that loss-of-function of these genes impairs viral entry. We find that PLAC8 is a key limiting host factor, whose overexpression boosts viral infection in eight different human lung cancer cell lines. Using single-cell RNA-Seq data analyses, we demonstrate that PLAC8 is highly expressed in ciliated and secretory cells of the respiratory tract, as well as in gut enterocytes, cell types that are highly susceptible to SARS-CoV-2 infection. Proteomics and cell biology studies suggest that PLAC8 and SPNS1 regulate the autophagolysosomal compartment and affect the intracellular fate of endocytosed virions.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Autofagia , Proteínas
8.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955659

RESUMO

Abscisic acid (ABA) and gibberellins (GA) are two important hormones that antagonistically regulate many aspects of plant growth and development [...].


Assuntos
Ácido Abscísico , Giberelinas , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(36): e2118763119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037356

RESUMO

Turritopsis dohrnii is the only metazoan able to rejuvenate repeatedly after its medusae reproduce, hinting at biological immortality and challenging our understanding of aging. We present and compare whole-genome assemblies of T. dohrnii and the nonimmortal Turritopsis rubra using automatic and manual annotations, together with the transcriptome of life cycle reversal (LCR) process of T. dohrnii. We have identified variants and expansions of genes associated with replication, DNA repair, telomere maintenance, redox environment, stem cell population, and intercellular communication. Moreover, we have found silencing of polycomb repressive complex 2 targets and activation of pluripotency targets during LCR, which points to these transcription factors as pluripotency inducers in T. dohrnii. Accordingly, we propose these factors as key elements in the ability of T. dohrnii to undergo rejuvenation.


Assuntos
Hidrozoários , Rejuvenescimento , Animais , Genômica , Hidrozoários/genética , Hidrozoários/crescimento & desenvolvimento , Estágios do Ciclo de Vida/genética , Transcriptoma
10.
Plant Physiol Biochem ; 189: 35-45, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041366

RESUMO

Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Plantas/metabolismo , Plastídeos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico/genética
11.
Front Plant Sci ; 12: 718932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868105

RESUMO

The gametophyte of ferns reproduces either by sexual or asexual means. In the latter, apogamy represents a peculiar case of apomixis, in which an embryo is formed from somatic cells. A proteomic and physiological approach was applied to the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative D. oreades. The proteomic analysis compared apogamous vs. female gametophytes, whereas the phytohormone study included, in addition to females, three apogamous stages (filamentous, spatulate, and cordate). The proteomic profiles revealed a total of 879 proteins and, after annotation, different regulation was found in 206 proteins of D. affinis and 166 of its sexual counterpart. The proteins upregulated in D. affinis are mostly associated to protein metabolism (including folding, transport, and proteolysis), ribosome biogenesis, gene expression and translation, while in the sexual counterpart, they account largely for starch and sucrose metabolism, generation of energy and photosynthesis. Likewise, ultra-performance liquid chromatography-tandem spectrometry (UHPLC-MS/MS) was used to assess the levels of indol-3-acetic acid (IAA); the cytokinins: 6-benzylaminopurine (BA), trans-Zeatine (Z), trans-Zeatin riboside (ZR), dyhidrozeatine (DHZ), dyhidrozeatin riboside (DHZR), isopentenyl adenine (iP), isopentenyl adenosine (iPR), abscisic acid (ABA), the gibberellins GA3 and GA4, salicylic acid (SA), and the brassinosteroids: brassinolide (BL) and castasterone (CS). IAA, the cytokinins Z, ZR, iPR, the gibberellin GA4, the brassinosteoids castasterone, and ABA accumulated more in the sexual gametophyte than in the apogamous one. When comparing the three apogamous stages, BA and SA peaked in filamentous, GA3 and BL in spatulate and DHRZ in cordate gametophytes. The results point to the existence of large metabolic differences between apogamous and sexual gametophytes, and invite to consider the fern gametophyte as a good experimental system to deepen our understanding of plant reproduction.

12.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199940

RESUMO

In this special issue entitled, "Advances in the Molecular Mechanisms of Abscisic Acid and Gibberellins Functions in Plants", eight articles are collected, with five reviews and three original research papers, which broadly cover different topics on the abscisic acid (ABA) field and, to a lesser extent, on gibberellins (GAs) research [...].


Assuntos
Ácido Abscísico/farmacologia , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Fenômenos Fisiológicos Vegetais , Plantas/efeitos dos fármacos
13.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672640

RESUMO

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled "Organelle Genetics in Plants." This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


Assuntos
Plantas/genética , Plastídeos/genética , Produtos Agrícolas/genética , Genoma Mitocondrial , Edição de RNA/genética
14.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494215

RESUMO

Present-day chloroplast and mitochondrial genomes contain only a few dozen genes involved in ATP synthesis, photosynthesis, and gene expression. The proteins encoded by these genes are only a small fraction of the many hundreds of proteins that act in chloroplasts and mitochondria. Hence, the vast majority, including components of organellar gene expression (OGE) machineries, are encoded by nuclear genes, translated into the cytosol and imported to these organelles. Consequently, the expression of nuclear and organellar genomes has to be very precisely coordinated. Furthermore, OGE regulation is crucial to chloroplast and mitochondria biogenesis, and hence, to plant growth and development. Notwithstanding, the molecular mechanisms governing OGE are still poorly understood. Recent results have revealed the increasing importance of nuclear-encoded modular proteins capable of binding nucleic acids and regulating OGE. Mitochondrial transcription termination factor (mTERF) proteins are a good example of this category of OGE regulators. Plant mTERFs are located in chloroplasts and/or mitochondria, and have been characterized mainly from the isolation and analyses of Arabidopsis and maize mutants. These studies have revealed their fundamental roles in different plant development aspects and responses to abiotic stress. Fourteen mTERFs have been hitherto characterized in land plants, albeit to a different extent. These numbers are limited if we consider that 31 and 35 mTERFs have been, respectively, identified in maize and Arabidopsis. Notwithstanding, remarkable progress has been made in recent years to elucidate the molecular mechanisms by which mTERFs regulate OGE. Consequently, it has been experimentally demonstrated that plant mTERFs are required for the transcription termination of chloroplast genes (mTERF6 and mTERF8), transcriptional pausing and the stabilization of chloroplast transcripts (MDA1/mTERF5), intron splicing in chloroplasts (BSM/RUG2/mTERF4 and Zm-mTERF4) and mitochondria (mTERF15 and ZmSMK3) and very recently, also in the assembly of chloroplast ribosomes and translation (mTERF9). This review aims to provide a detailed update of current knowledge about the molecular functions of plant mTERF proteins. It principally focuses on new research that has made an outstanding contribution to unravel the molecular mechanisms by which plant mTERFs regulate the expression of chloroplast and mitochondrial genomes.


Assuntos
Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Pesquisa , Mitocôndrias/metabolismo , Splicing de RNA/genética , Estresse Fisiológico
15.
BMC Evol Biol ; 20(1): 135, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076840

RESUMO

BACKGROUND: Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes. RESULTS: We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs. CONCLUSIONS: The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.


Assuntos
Aves , Evolução Molecular , Mamíferos , Perforina/genética , Anfíbios/genética , Animais , Aves/genética , Peixes/genética , Genoma , Mamíferos/genética , Filogenia , Répteis/genética
16.
Plants (Basel) ; 9(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630785

RESUMO

Plastid gene expression (PGE) must adequately respond to changes in both development and environmental cues. The transcriptional machinery of plastids in land plants is far more complex than that of prokaryotes. Two types of DNA-dependent RNA polymerases transcribe the plastid genome: a multimeric plastid-encoded polymerase (PEP), and a monomeric nuclear-encoded polymerase (NEP). A single NEP in monocots (RPOTp, RNA polymerase of the T3/T7 phage-type) and two NEPs in dicots (plastid-targeted RPOTp, and plastid- and mitochondrial-targeted RPOTmp) have been hitherto identified. To unravel the role of PGE in plant responses to abiotic stress, we investigated if Arabidopsis RPOTp could function in plant salt tolerance. To this end, we studied the sensitivity of T-DNA mutants scabra3-2 (sca3-2) and sca3-3, defective in the RPOTp gene, to salinity, osmotic stress and the phytohormone abscisic acid (ABA) required for plants to adapt to abiotic stress. sca3 mutants were hypersensitive to NaCl, mannitol and ABA during germination and seedling establishment. Later in development, sca3 plants displayed reduced sensitivity to salt stress. A gene ontology (GO) analysis of the nuclear genes differentially expressed in the sca3-2 mutant (301) revealed that many significantly enriched GO terms were related to chloroplast function, and also to the response to several abiotic stresses. By quantitative RT-PCR (qRT-PCR), we found that genes LHCB1 (LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING1) and AOX1A (ALTERNATIVE OXIDASE 1A) were respectively down- and up-regulated in the Columbia-0 (Col-0) salt-stressed plants, which suggests the activation of plastid and mitochondria-to-nucleus retrograde signaling. The transcript levels of genes RPOTp, RPOTmp and RPOTm significantly increased in these salt-stressed seedlings, but this enhanced expression did not lead to the up-regulation of the plastid genes solely transcribed by NEP. Similar to salinity, carotenoid inhibitor norflurazon (NF) also enhanced the RPOTp transcript levels in Col-0 seedlings. This shows that besides salinity, inhibition of chloroplast biogenesis also induces RPOTp expression. Unlike salt and NF, the NEP genes were significantly down-regulated in the Col-0 seedlings grown in ABA-supplemented media. Together, our findings demonstrate that RPOTp functions in abiotic stress tolerance, and RPOTp is likely regulated positively by plastid-to-nucleus retrograde signaling, which is triggered when chloroplast functionality is perturbed by environmental stresses, e.g., salinity or NF. This suggests the existence of a compensatory mechanism, elicited by impaired chloroplast function. To our knowledge, this is the first study to suggest the role of a nuclear-encoded plastid-RNA polymerase in salt stress tolerance in plants.

17.
Biochem Mol Biol Educ ; 48(5): 442-447, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32604462

RESUMO

The recent COVID-19 pandemic has led to widespread lock-down strategies that force universities to perform all educational activities remotely. In this context, laboratory lessons pose a significant challenge. Here, I present an on-line tool that simulates the kinetics of chemical reactions. Enzymatic mechanisms can be easily modeled and followed through time. In addition, professors can customize the interface to hide the reaction mechanism. This setting will force students to design virtual experiments to uncover the mechanism and obtain the relevant enzymatic parameters. While some of the skills developed in a practical lesson cannot be simulated, this tool can be used to teach students important concepts about data acquisition and processing.


Assuntos
Bioquímica/educação , COVID-19/epidemiologia , Educação a Distância , Pandemias , SARS-CoV-2 , Universidades , Realidade Virtual , Humanos , Laboratórios
18.
Sci Rep ; 9(1): 14938, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624306

RESUMO

Tardigrades, also known as water bears, are small aquatic animals that inhabit marine, fresh water or limno-terrestrial environments. While all tardigrades require surrounding water to grow and reproduce, species living in limno-terrestrial environments (e.g. Ramazzottius varieornatus) are able to undergo almost complete dehydration by entering an arrested state known as anhydrobiosis, which allows them to tolerate ionic radiation, extreme temperatures and intense pressure. Previous studies based on comparison of the genomes of R. varieornatus and Hypsibius dujardini - a less tolerant tardigrade - have pointed to potential mechanisms that may partially contribute to their remarkable ability to resist extreme physical conditions. In this work, we have further annotated the genomes of both tardigrades using a guided approach in search for novel mechanisms underlying the extremotolerance of R. varieornatus. We have found specific amplifications of several genes, including MRE11 and XPC, and numerous missense variants exclusive of R. varieornatus in CHEK1, POLK, UNG and TERT, all of them involved in important pathways for DNA repair and telomere maintenance. Taken collectively, these results point to genomic features that may contribute to the enhanced ability to resist extreme environmental conditions shown by R. varieornatus.


Assuntos
Adaptação Fisiológica/genética , Extremófilos/fisiologia , Genoma/fisiologia , Anotação de Sequência Molecular , Tardígrados/fisiologia , Animais , Amplificação de Genes , Genômica , Mutação de Sentido Incorreto , Água
19.
EMBO Mol Med ; 11(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30862662

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin-driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E-deficient mice. However, the molecular mechanism underlying this process remains unknown. Using a transcriptomic approach, we identify here endoplasmic reticulum stress (ER) and the unfolded protein responses as drivers of VSMC death in two mouse models of HGPS exhibiting ubiquitous and VSMC-specific progerin expression. This stress pathway was also activated in HGPS patient-derived cells. Targeting ER stress response with a chemical chaperone delayed medial VSMC loss and inhibited atherosclerosis in both progeria models, and extended lifespan in the VSMC-specific model. Our results identify a mechanism underlying cardiovascular disease in HGPS that could be targeted in patients. Moreover, these findings may help to understand other vascular diseases associated with VSMC death, and provide insight into aging-dependent vascular damage related to accumulation of unprocessed toxic forms of lamin A.


Assuntos
Estresse do Retículo Endoplasmático , Lamina Tipo A/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/etiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Estimativa de Kaplan-Meier , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Progéria/tratamento farmacológico , Progéria/mortalidade , Progéria/patologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
20.
Int J Mol Sci ; 20(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823472

RESUMO

Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles' physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.


Assuntos
Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Fenômenos Fisiológicos Vegetais , Estresse Salino , Cloroplastos/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...